Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Consider a simple harmonic motion (SHM). Let $K$ and $U$ be kinetic energy and potential energy when the displacement in SHM is one-half $\left(\frac{1}{2}\right)$ the amplitude. Which of the correct statement?
PhysicsOscillationsTS EAMCETTS EAMCET 2020 (11 Sep Shift 1)
Options:
  • A $\frac{K}{U}=1$
  • B $\frac{K}{U}=\frac{1}{2}$
  • C $\frac{K}{U}=\frac{4}{3}$
  • D $\frac{K}{U}=3$
Solution:
2394 Upvotes Verified Answer
The correct answer is: $\frac{K}{U}=3$
Potential energy of a body performing SHM is given by
$U=\frac{1}{2} k x^2$
Here, $x$ is the displacement of the body from mean position.
Given,
$x=\frac{a}{2}$ [ $a=$ amplitude $]$
$\therefore \quad U=\frac{1}{2} k\left(\frac{a}{2}\right)^2 \Rightarrow U=\frac{1}{2} k \frac{a^2}{4}$ $\ldots(\mathrm{i})$
Now, kinetic energy of this body is given by
$K=\frac{1}{2} m v^2=\frac{1}{2} m \omega^2\left(a^2-x^2\right)$
$\Rightarrow \quad K=\frac{1}{2} K\left(a^2-x^2\right)$
Given, $\quad x=\frac{a}{2}$
$\therefore \quad K=\frac{1}{2} K\left(a^2-\frac{a^2}{4}\right) \Rightarrow K=\frac{1}{2} k \times \frac{3 a^2}{4}$ $\ldots(\mathrm{ii})$
From Eqs. (i) and (ii), we get
$\frac{K}{U}=\frac{\frac{1}{2} k \times \frac{3 a^2}{4}}{\frac{1}{2} k \times \frac{a^2}{4}}=\frac{3}{1}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.