Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Consider a sphere of radius $\mathrm{R}$ with charge density distributed as $p(r)=k r$ for $r \leq R=0$ for $r>R$.
(a) Find the electric field as all points $r$.
(b) Suppose the total charge on the sphere is $2 \mathrm{e}$ where e is the electron charge. Where can two protons be embedded such that the force on each of them is zero. Assume that the introduction of the proton does not alter the negative charge distribution.
PhysicsElectrostatics
Solution:
1495 Upvotes Verified Answer
(a) Consider a sphere $S$ of radius $R$ and two hypothetic sphere of radius $r < R$ and $r>R$.

$$
\text { According to Gauss's law, } \oint \text { E.dS }=\frac{\mathrm{q}}{\varepsilon_0}
$$
Case I : Consider, for Point $\mathrm{r} < \mathrm{R}$, electric field intensity will be
$$
\oint \mathrm{E} . \mathrm{dS}=\frac{1}{\varepsilon_0} \int \rho \mathrm{dV} \quad(\mathrm{q}=\rho \mathrm{dV})
$$
Volume of Gaussion surface $(\mathrm{V})$
As we know that,
For $\mathrm{dV}, \mathrm{V}=\frac{4}{3} \pi \mathrm{r}^3 \Rightarrow \mathrm{dV}=3 \times \frac{4}{3} \pi \mathrm{r}^2 \mathrm{dr}=4 \pi \mathrm{r}^2 \mathrm{dr}$
$$
[\rho(r)=k r \text { for }(r < R)]
$$
So, $\quad \oint \mathrm{E} . \mathrm{dS}=\frac{1}{\varepsilon_0} 4 \pi \mathrm{K} \int_0^{\mathrm{r}} \mathrm{r}^3 \mathrm{dr}$
(E) $4 \pi \mathrm{r}^2=\frac{4 \pi \mathrm{K}}{\varepsilon_0} \frac{\mathrm{r}^4}{4}$
$$
\mathrm{E}=\frac{1}{4 \varepsilon_0} \mathrm{Kr}^2
$$
So, direction of $\mathrm{E}$ is radially outwards.
Case II : By Gauss's law
$$
\oint E . d S=\frac{q}{\epsilon_0}
$$
For points $r>R$, electric field intensity will be
$$
\oint \mathrm{E} \cdot \mathrm{dS}=\frac{1}{\varepsilon_0} \int \rho \mathrm{dV} \quad(\because \mathrm{q}=\rho \mathrm{dV})
$$
FordV,
$$
\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^3
$$
$$
\begin{aligned}
\mathrm{dV} &=3 \times \frac{4}{3} \pi \mathrm{r}^2 \mathrm{dr} \\
&=4 \pi \mathrm{r}^2 \mathrm{dr} \\
\rho(\mathrm{r}) &=\mathrm{Kr} \text { for } \mathrm{r}>\mathrm{R} \\
\mathrm{E}\left(4 \pi \mathrm{r}^2\right)=\frac{4 \pi \mathrm{K}}{\varepsilon_0} \int_0^{\mathrm{R}} \mathrm{r}^3 \mathrm{dr}=\frac{4 \pi \mathrm{K}\left(\mathrm{R}^4-0\right)}{\varepsilon_0} 4
\end{aligned}
$$
$\mathrm{E}=\frac{\mathrm{K}}{4 \varepsilon_0} \frac{\mathrm{R}^4}{\mathrm{r}^2}$
Charge density is again positive. So, the direction of $E$ is radially outward.
(b) The two protons must be on the opposite sides of the centre along a diameter following, the rule of symmetry. This can be shown by the figure so, total negative charge on the sphere is $2 \mathrm{e}$, it is distributed in sphere of radius $R$.

Symmetrically,
so, the charge on sphere is
$$
\begin{aligned}
\mathrm{q} &=\int_0^{\mathrm{R}} \rho \mathrm{dV}=\int_0^{\mathrm{R}}(\mathrm{Kr}) 4 \pi \mathrm{r}^2 \mathrm{dr} \\
\mathrm{q} &=4 \pi \mathrm{K} \frac{\mathrm{R}^4}{4}=2 \mathrm{e} \\
\therefore \quad \mathrm{K} &=\frac{2 \mathrm{e}}{\pi \mathrm{R}^4}
\end{aligned}
$$
If protons 1 and 2 are embedded at distance $r$ from the centre $\mathrm{O}$ of the sphere as shown thus attractive force on proton 1 due to charge distribution inside the charge sphere at $\mathrm{r} < \mathrm{R}$ from part (a) is
$$
F_1=\mathrm{eE}=\frac{-\mathrm{eKr}^2}{4 \varepsilon_0}, \quad\left(\because \mathrm{E}=\frac{\mathrm{Kr}^2}{4 \epsilon_0}\right)
$$
Repulsive force on proton 1 due to proton 2 is
$$
\mathrm{F}_2=\frac{\mathrm{e}^2}{4 \pi \varepsilon_0(2 \mathrm{r})^2}
$$
Net force on proton 1 ,
$$
\begin{aligned}
&\mathrm{F}=\mathrm{F}_1+\mathrm{F}_2 \\
&\mathrm{~F}=\frac{-\mathrm{eKr}^2}{4 \varepsilon_0}+\frac{\mathrm{e}^2}{16 \pi \varepsilon_0 \mathrm{r}^2}
\end{aligned}
$$
By putting the value of $(\mathrm{K})$
So,
$$
\mathrm{F}=\left[\frac{-\mathrm{er}^2}{4 \varepsilon_0} \frac{2 \mathrm{e}}{\pi \mathrm{R}^4}+\frac{\mathrm{e}^2}{16 \pi \varepsilon_0 \mathrm{r}^2}\right]
$$
Therefore, net force on proton 1 will be zero, so
$$
\begin{aligned}
\mathrm{F}=0 \quad \text { or } \quad \mathrm{F}_1+\mathrm{F}_2=0 \\
\frac{-\mathrm{er}^2 2 \mathrm{e}}{4 \epsilon_0 \pi \mathrm{R}^4}+\frac{\mathrm{e}^2}{16 \pi \epsilon_0 \mathrm{r}^2}=0 \\
\frac{\mathrm{er}^2 2 \mathrm{e}}{4 \varepsilon_0 \pi \mathrm{R}^4}=\frac{\mathrm{e}^2}{16 \pi \varepsilon_0 \mathrm{r}^2} \\
\mathrm{r}^4=\frac{\mathrm{R}^4}{8} \quad \text { or } \quad \mathrm{r}=\frac{\mathrm{R}}{(8)^{1 / 4}}
\end{aligned}
$$
This is the distance of each of the two protons from the centre of the sphere.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.