Search any question & find its solution
Question:
Answered & Verified by Expert
Consider the conic $\mathrm{ex}^{2}+\pi y^{2}-2 \mathrm{e}^{2} \mathrm{x}-2 \pi^{2} \mathrm{y}+\mathrm{e}^{3}+\pi^{3}=\pi \mathrm{e}$. Suppose $\mathrm{P}$ is any point on the conic and $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are the foci of the conic, then the maximum value of $\left(\mathrm{PS}_{1}+\mathrm{PS}_{2}\right)$ is $-$
Options:
Solution:
2852 Upvotes
Verified Answer
The correct answer is:
$2 \sqrt{\pi}$
$e x^{2}+\pi y^{2}-2 e^{2} x-2 \pi^{2} y+e^{3}+\pi^{3}=\pi e$ $e\left(x^{2}-2 e x+e^{2}\right)+\pi\left(y^{2}-2 \pi y+\pi^{2}\right)=\pi e$ $\frac{(x-e)^{2}}{\pi}+\frac{(y-\pi)^{2}}{e}=1$
$a^{2}=\pi \Rightarrow a=\Gamma \pi \quad \quad \pi>e$
$P S_{1}+P S_{2}=2 a$ Major axis is $\|$ to axis
$P S_{1}+P S_{2}=2 \cdot F \bar{\pi}$
$a^{2}=\pi \Rightarrow a=\Gamma \pi \quad \quad \pi>e$
$P S_{1}+P S_{2}=2 a$ Major axis is $\|$ to axis
$P S_{1}+P S_{2}=2 \cdot F \bar{\pi}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.