Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\cos \frac{\pi}{12}=$
MathematicsTrigonometric Ratios & IdentitiesAP EAMCETAP EAMCET 2022 (08 Jul Shift 1)
Options:
  • A $\frac{\sqrt{2}-\sqrt{3}}{2}$
  • B $\frac{\sqrt{2}+\sqrt{3}}{2}$
  • C $\frac{\sqrt{2}-\sqrt{6}}{4}$
  • D $\frac{\sqrt{2}+\sqrt{6}}{4}$
Solution:
1255 Upvotes Verified Answer
The correct answer is: $\frac{\sqrt{2}+\sqrt{6}}{4}$
Let $\theta=\frac{\pi}{12}$
$\because \cos 2 \theta=2 \cos ^2 \theta-1$
$\begin{aligned} & \Rightarrow \cos \left(\frac{\pi}{6}\right)=2 \cos ^2 \theta-1 \Rightarrow 2 \cos ^2 \theta-1=\frac{\sqrt{3}}{2} \\ & \Rightarrow \cos ^2 \theta=\frac{\sqrt{3}+2}{4}=\frac{8+4 \sqrt{3}}{16}\end{aligned}$
$=\frac{2+6+2 \sqrt{2.6}}{16}=\frac{(\sqrt{2}+\sqrt{6})^2}{4^2}$
$\therefore \cos \theta=\cos \frac{\pi}{12}=\frac{\sqrt{2}+\sqrt{6}}{4}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.