Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
For a particle executing simple harmonic motion, the displacement-time $(x-t)$ graph is as shown in the figure. The acceleration of the particle at $t=\frac{4}{3} \mathrm{~s}$ is

PhysicsOscillationsAP EAMCETAP EAMCET 2019 (21 Apr Shift 1)
Options:
  • A $-\frac{\sqrt{3}}{32} \pi^2 \mathrm{~cm} \mathrm{~s}^{-2}$
  • B $\frac{32}{\sqrt{3}} \pi^2 \mathrm{~cm} \mathrm{~s}^{-2}$
  • C $+\frac{\sqrt{3}}{32} \pi \mathrm{cm} \mathrm{s}^{-2}$
  • D $+\frac{32}{\sqrt{3}} \pi \mathrm{cm} \mathrm{s}^{-2}$
Solution:
1578 Upvotes Verified Answer
The correct answer is: $-\frac{\sqrt{3}}{32} \pi^2 \mathrm{~cm} \mathrm{~s}^{-2}$
The displacement-time graph shown in the figure is a sine wave, so the equation of displacement, $x=1 \sin \omega t$


Here, $\quad T=8 \mathrm{~s}$
(for a complete cycle)

Hence, $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{8}=\frac{\pi}{4} \mathrm{rad} / \mathrm{s}$
and acceleration in SHM,
$$
\begin{aligned}
\alpha & =-\omega^2 a \sin \omega t \\
\alpha & =-\left(\frac{\pi}{4}\right)^2 \times 1 \times \sin \left(\frac{\pi}{4} \times \frac{4}{3}\right) \\
\Rightarrow \quad \alpha & =-\frac{\pi^2}{16} \times \frac{\sqrt{3}}{2}=-\frac{\pi^2 \sqrt{3}}{32} \mathrm{~cm} \mathrm{~s}^{-2}
\end{aligned}
$$

Hence, the correct option is (a).

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.