Search any question & find its solution
Question:
Answered & Verified by Expert
If $\int \frac{x^3 \mathrm{~d} x}{\sqrt{1+x^2}}=\mathrm{a}\left(1+x^2\right) \sqrt{1+x^2}+\mathrm{b} \sqrt{1+x^2}+\mathrm{c}$ (where $\mathrm{c}$ is a constant of integration), then the value of $3 \mathrm{ab}$ is
Options:
Solution:
1038 Upvotes
Verified Answer
The correct answer is:
$-1$
$\begin{aligned} & \text { Put } 1+x^2=\mathrm{t}^2 \\ & \Rightarrow 2 x \mathrm{~d} x=2 \mathrm{t} \mathrm{dt} \\ & \Rightarrow x \mathrm{~d} x=\mathrm{t} d \mathrm{t} \\ & \quad \int \frac{x^3 \mathrm{~d} x}{\sqrt{1+x^2}} \\ & =\int \frac{\mathrm{t}^2-1}{\mathrm{t}} \cdot \mathrm{t} d \mathrm{t} \\ & =\int\left(\mathrm{t}^2-1\right) \mathrm{dt} \\ & =\frac{\mathrm{t}^3}{3}-\mathrm{t}+\mathrm{c} \\ & =\frac{\left(1+x^2\right)^{\frac{3}{2}}}{3}-\sqrt{1+x^2}+\mathrm{c} \\ & =\frac{1}{3}\left(1+x^2\right) \sqrt{1+x^2}-\sqrt{1+x^2}+\mathrm{c}\end{aligned}$
$\begin{aligned} \therefore \quad & a=\frac{1}{3}, b=-1 \\ & \Rightarrow 3 a b=-1\end{aligned}$
$\begin{aligned} \therefore \quad & a=\frac{1}{3}, b=-1 \\ & \Rightarrow 3 a b=-1\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.