Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \frac{x e^{x}}{(1+x)^{2}} d x=e^{x} f(x)+c$, then $f(x)$ is equal to
MathematicsIndefinite IntegrationCOMEDKCOMEDK 2012
Options:
  • A $\frac{1}{(1+x)^{2}}$
  • B $\frac{x}{(1+x)}$
  • C $\frac{1}{1+x}$
  • D $\frac{x}{(1+x)^{2}}$
Solution:
1243 Upvotes Verified Answer
The correct answer is: $\frac{1}{1+x}$
We have, $I=\int \frac{x e^{x}}{(1+x)^{2}} d x$
$$
=\int \frac{(x+1-1)}{(x+1)^{2}} e^{x} d x
$$
$$
\begin{aligned}
&=\int\left[\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right] e^{x} d x \\
&=e^{x} \frac{1}{(1+x)}+C
\end{aligned}
$$
On comparing, we get
$$
f(x)=\frac{1}{1+x}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.