Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $(1+x)^n=a_0+a_1 x+a_2 x^2+\ldots+a_n x^n$ and $a_0-a_2+a_4-a_6+\ldots=k \cos \frac{n \pi}{4}$, then $k=$
MathematicsBinomial TheoremAP EAMCETAP EAMCET 2019 (20 Apr Shift 2)
Options:
  • A $2^n$
  • B $2^{2 n}$
  • C $\frac{2^n}{2}$
  • D $2^{\frac{n}{2}}$
Solution:
1029 Upvotes Verified Answer
The correct answer is: $2^{\frac{n}{2}}$
If $(1+x)^n=a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots+a_n x^n$

Put $x=i$, we get
$$
\begin{aligned}
(1+i)^n=\left(a_0-a_2+a_4-a_6+\ldots\right) & +\ldots \\
& +i\left(a_1-a_3+a_5-a_7+\ldots\right) \\
\Rightarrow\left[\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^n= & \left(a_0-a_2+a_4-a_6+\ldots\right) \\
& +i\left(a_1-a_3+a_5-a_7+\ldots\right)
\end{aligned}
$$

On comparing the real and imaginary parts, we get
$$
2^{n / 2} \cos \frac{n \pi}{4}=a_0-a_2+a_4-a_6+\ldots
$$
and $2^{n / 2} \sin \frac{n \pi}{4}=a_1-a_3+a_5-a_7+\ldots$
$$
\because \quad a_0-a_2+a_4-a_6+\ldots=k \cos \frac{n \pi}{4} \Rightarrow k=2^{\frac{n}{2}}
$$

Hence, option (d) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.