Search any question & find its solution
Question:
Answered & Verified by Expert
If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n$, then $C_0+2 C_1+3 C_2+\ldots+(n+1) C_n$ is equal to
Options:
Solution:
1311 Upvotes
Verified Answer
The correct answer is:
$2^n+n \cdot 2^{n-1}$
Let $S=C_0+2 C_1+3 C_2+\ldots+(n+1) C_n \ldots$ (i)
$\begin{aligned} & S=C_n+2 C_{n-1}+3 C_{n-2}+\ldots+(n+1) C_0 \\ & \text { or } S=(n+1) C_0+n C_1+\ldots+C_n\end{aligned}$
On adding Eqs. (i) and (ii), we have
$\begin{aligned} 2 S & =C_0[1+n+1]+C_1[2+n]+\ldots+C_n[n+1+1] \\ 2 S & =(n+2)\left(C_0+C_1+\ldots+C_n\right) \\ S & =\frac{(n+2)}{2} 2^n=(n+2) 2^{n-1}=n 2^{n-1}+2^n\end{aligned}$
$\begin{aligned} & S=C_n+2 C_{n-1}+3 C_{n-2}+\ldots+(n+1) C_0 \\ & \text { or } S=(n+1) C_0+n C_1+\ldots+C_n\end{aligned}$
On adding Eqs. (i) and (ii), we have
$\begin{aligned} 2 S & =C_0[1+n+1]+C_1[2+n]+\ldots+C_n[n+1+1] \\ 2 S & =(n+2)\left(C_0+C_1+\ldots+C_n\right) \\ S & =\frac{(n+2)}{2} 2^n=(n+2) 2^{n-1}=n 2^{n-1}+2^n\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.