Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n$, then the value of $C_0+C_2+C_4+C_6+\ldots .$. is
MathematicsBinomial TheoremJEE Main
Options:
  • A $2^{n-1}$
  • B $2^n-1$
  • C $2^n$
  • D $2^{n-1}-1$
Solution:
2466 Upvotes Verified Answer
The correct answer is: $2^{n-1}$
$(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots .+C_n x^n$
Putting $x=1$, we get
$\Rightarrow 2^n=C_0+C_1+C_2+\ldots . .+C_n...(i)$
or
$C_1+C_2+C_3+\ldots .+C_n=2^n-1 \quad\left[\boxtimes C_0={ }^n C_0=1\right]$
Again, putting $x=-1$, we get
$0=C_0-C_1+C_2-C_3+\ldots$
or
$C_0+C_2+C_4+\ldots=C_1+C_3+C_5+\ldots \text { i.e. } A=B$
Also from (i), $A+B=2^n$ or $A=2^{n-1}=B$
Hence, $C_0+C_2+C_4+\ldots=2^{n-1}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.