Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int_{1}^{x} \frac{d t}{|t| \sqrt{t^{2}-1}}=\frac{\pi}{6}$, then $\mathrm{x}$ can be equal to
MathematicsBinomial TheoremVITEEEVITEEE 2010
Options:
  • A $\frac{2}{\sqrt{3}}$
  • B $\sqrt{3}$
  • C 2
  • D None of these
Solution:
2649 Upvotes Verified Answer
The correct answer is: $\frac{2}{\sqrt{3}}$
$$\begin{array}{l} \int_{1}^{x} \frac{d t}{|t| \sqrt{t^{2}-1}}=\frac{\pi}{6} \\
\Rightarrow\left[\mathrm{sec}^{-1} t\right]_{1}^{x}=\frac{\pi}{6} \\
\Rightarrow \sec ^{-1} x-\sec ^{-1} 1=\frac{\pi}{6} \\
\Rightarrow \sec ^{-1} x-0=\frac{\pi}{6} \Rightarrow x=\sec \frac{\pi}{6} \\
\Rightarrow x=\frac{2}{\sqrt{3}}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.