Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\left(1+x+x^2\right)^n=c_0+c_1 x+c_2 x^2+\ldots$, then the value of $c_0 c_1-c_1 c_2+c_2 c_3-\ldots$ is
MathematicsBinomial TheoremAP EAMCETAP EAMCET 2019 (20 Apr Shift 2)
Options:
  • A $(-1)^n$
  • B 0
  • C $2^n$
  • D $3^n$
Solution:
1481 Upvotes Verified Answer
The correct answer is: 0


On replacing $x$ by $-\frac{1}{x}$, we get
$$
\begin{aligned}
& \frac{\left(1-x+x^2\right)^n}{x^{2 n}} \\
& =\frac{C_0 x^{2 n}-C_1 x^{2 n-1}+C_2 x^{2 n-2}-C_3 x^{2 n-3}+\ldots}{x^{2 n}} \\
& \Rightarrow\left(1-x+x^2\right)^n=C_0 x^{2 n}-C_1 x^{2 n-1}+C_2 x^{2 n-2}
\end{aligned}
$$

$$
\begin{aligned}
& \because C_0 C_1-C_1 C_2+C_2 C_3-\ldots=\text { Coefficient of } x^{2 n+1} \text { in } \\
& \left(C_0 x^{2 n}-C_1 x^{2 n-1}+C_2 x^{2 n-2}-C_3 x^{2 n-3}+\ldots\right) \\
& \times\left(C_0+C_1 x+C_2 x^2+C_3 x^3+\ldots\right) \\
& =\text { Coefficient of } x^{2 n+1} \text { in }\left(1+x+x^2\right)^n\left(1-x+x^2\right)^n \\
& =\text { Coefficient of } x^{2 n+1} \text { in }\left(\left(1+x^2\right)^2-x^2\right)^n \\
& =\text { Coefficient of } x^{2 n+1} \text { in }\left(1+x^4+x^2\right)^n=0
\end{aligned}
$$
$\because$ Coefficient of $x^k$ in the expansion of $\left(1+x^2+x^4\right)^n$ exists if $k$ is even, otherwise it will be zero and $(2 n+1)$ is odd.

Hence, option (b) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.