Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha=\frac{1+\mathrm{i} \sqrt{3}}{2}$, then what is the value of $1+\alpha^{8}+\alpha^{16}+$ $\alpha^{24}+\alpha^{32} ?$
MathematicsComplex NumberNDANDA 2007 (Phase 2)
Options:
  • A 0
  • B 1
  • C $\omega$
  • D $-\omega^{2}$
Solution:
1081 Upvotes Verified Answer
The correct answer is: $-\omega^{2}$
$\frac{-1+\mathrm{i} \sqrt{3}}{2}$ and $\frac{-1-\mathrm{i} \sqrt{3}}{2}$
are complex cube roots of unity $\omega$ and $\omega^{2}$
$\begin{aligned} & \alpha=\frac{1+\mathrm{i} \sqrt{3}}{2}=-\omega^{2} \\ \therefore \quad & 1+\alpha^{8}+\alpha^{16}+\alpha^{24}+\alpha^{32} \\=& 1+\omega^{16}+\omega^{32}+\omega^{48}+\omega^{64} \\=& 1+\omega+\omega^{2}+1+\omega=0+1+\omega=-\omega^{2} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.