Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ then the value of $\sqrt{4 \cos ^{4} \theta+\sin ^{2} 2 \theta}+4 \cot \theta \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)$ is
MathematicsTrigonometric Ratios & IdentitiesWBJEEWBJEE 2015
Options:
  • A $-2 \cot \theta$
  • B $2 \cot \theta$
  • C $2 \cos \theta$
  • D $2 \sin \theta$
Solution:
1903 Upvotes Verified Answer
The correct answer is: $2 \cot \theta$
$\sqrt{4 \cos ^{4} \theta+\sin ^{2} 2 \theta}+4 \cot \theta \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)$
$=\sqrt{4 \cos ^{4} \theta+(2 \sin \theta \cos \theta)^{2}} +2 \cot \theta\left[2 \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right]$
$=\sqrt{4 \cos ^{4} \theta+4 \sin ^{2} \theta \cos ^{2} \theta} +2 \cot \theta\left[1+\cos \left(\frac{\pi}{2}-\theta\right)\right]$
$=\sqrt{4 \cos ^{2} \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}+2 \cot \theta(1+\sin \theta)$
$=|2 \cos \theta|+2 \cot \theta+2 \cos \theta$
$=-2 \cos \theta+2 \cot \theta+2 \cos \theta$
$\quad\left[\right.$ for $\left.\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right),|\cos \theta|=-\cos \theta\right]$
$=2 \cot \theta$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.