Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\frac{3 \pi}{2} < x < \frac{5 \pi}{2}$ and $\int(\sqrt{1-\sin x}+\sqrt{1+\sin x})$ $\mathrm{dx}=\mathrm{f}(\mathrm{x})+\mathrm{c}$ where $\mathrm{c}$ is the constant of integration, then $\mathrm{f}\left(\frac{\pi}{3}\right)-\mathrm{f}(0)=$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2023 (13 May Shift 2)
Options:
  • A 2
  • B -2
  • C $2 \sqrt{2}$
  • D $-2 \sqrt{2}$
Solution:
1080 Upvotes Verified Answer
The correct answer is: -2
$\begin{aligned} & \int(\sqrt{1-\sin x}+\sqrt{1+\sin x}) d x \\ & \because \frac{3 \pi}{2} < x < \frac{5 \pi}{2} \Rightarrow \frac{3 \pi}{4} < \frac{x}{2} < \frac{5 \pi}{4} \\ & \because \ln \left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right), \sin \frac{x}{2}>\cos \frac{x}{2} \\ = & \int\left(\sqrt{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^2}+\sqrt{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^2}\right) d x \\ = & \left.\int\left(\left|\cos \frac{x}{2}-\sin \frac{x}{2}\right|+\cos \frac{x}{2}+\sin \frac{x}{2}\right)\right) d x \\ = & \int\left(\sin \frac{x}{2}-\cos \frac{x}{2}+\sin \frac{x}{2}+\cos \frac{x}{2}\right) d x \\ = & 2 \int \sin \frac{x}{2} d x=2 \times 2\left[-\cos \frac{x}{2}\right]+C \\ = & -4 \cos \frac{x}{2}+C \Rightarrow f(x)=-4 \cos \frac{x}{2} \\ \therefore & f\left(\frac{\pi}{3}\right)-f(0)=-4 \cos \left(\frac{\pi}{6}\right)+4 \cos 0=4-\frac{4 \sqrt{3}}{2} .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.