Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $2 A=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$, then what is $A^{-1}$ equal to?
MathematicsMatricesNDANDA 2013 (Phase 2)
Options:
  • A $\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
  • B $\frac{1}{2}\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
  • C $\frac{1}{4}\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
  • D None of these
Solution:
1464 Upvotes Verified Answer
The correct answer is: None of these
Given, $2 \mathrm{~A}=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$
$\mathrm{A}=\left(\begin{array}{cc}1 & \frac{1}{2} \\ \frac{3}{2} & 1\end{array}\right)$
$|\mathrm{A}|=\frac{1}{4}$
$\operatorname{adj} \mathrm{A}=\left(\begin{array}{cc}1 & -\frac{1}{2} \\ \frac{-3}{2} & 1\end{array}\right)$
$\mathrm{A}^{-1}=4\left(\begin{array}{cc}1 & -\frac{1}{2} \\ \frac{-3}{2} & 1\end{array}\right)=\left(\begin{array}{cc}4 & -2 \\ -6 & 4\end{array}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.