Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $2 \hat{i}+\hat{j}-\hat{k}, \hat{i}-3 \hat{j}+5 \hat{k}$ and $-3 \hat{i}+4 \hat{j}+4 \hat{k}$ are the position vectors of three points A, B and C respectively, then
MathematicsVector AlgebraAP EAMCETAP EAMCET 2023 (17 May Shift 1)
Options:
  • A $\mathrm{ABC}$ is a right angled triangle
  • B $\mathrm{ABC}$ is an isosceles triangle
  • C $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear points
  • D $\mathrm{ABC}$ is a scalene triangle
Solution:
1941 Upvotes Verified Answer
The correct answer is: $\mathrm{ABC}$ is a scalene triangle
$\begin{aligned}
\text { (d) } \overrightarrow{O A}=2 \hat{i}+\hat{j}-\hat{k}, \overrightarrow{O B}=\hat{i}-3 \hat{j}+5 \hat{k}, O C=-3 \hat{i}+4 \hat{j}+4 \hat{k} \\
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=-\hat{i}+4 \hat{j}+6 \hat{k} \Rightarrow|\overrightarrow{A B}|=\sqrt{1+16+36}=\sqrt{53} \\
\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=-4 \hat{i}+7 \hat{j}-\hat{k} \Rightarrow|\overrightarrow{B C}|=\sqrt{16+49+1}=\sqrt{66} \\
\overrightarrow{C A}=\overrightarrow{O A}-\overrightarrow{O C}=5 \hat{i}-3 \hat{j}-5 \hat{k} \Rightarrow|\overrightarrow{C A}|=\sqrt{25+9+25}=\sqrt{59} \\
\quad|\overrightarrow{A B}| \neq|\overrightarrow{B C}| \neq|\overrightarrow{C A}|
\end{aligned}$
$\therefore \triangle A B C$ is a scalene triangle.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.