Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha+\beta+\gamma=2 \theta$, then $\cos \theta+\cos (\theta-\alpha)$ $+\cos (\theta-\beta)+\cos (\theta-\gamma)$ is equal to
MathematicsTrigonometric EquationsJEE Main
Options:
  • A $4 \sin \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$
  • B $4 \cos \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \cos \frac{\gamma}{2}$
  • C $4 \sin \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$
  • D $4 \sin \alpha \cdot \sin \beta \cdot \sin \gamma$
Solution:
2945 Upvotes Verified Answer
The correct answer is: $4 \cos \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \cos \frac{\gamma}{2}$
Now,
$$
\begin{aligned}
& \cos (\theta-\alpha)+\cos (\theta-\beta)+\cos \theta+\cos (\theta-\gamma) \\
&= 2 \cos \left(\theta-\left(\frac{\alpha+\beta}{2}\right)\right) \cos \left(\frac{\beta-\alpha}{2}\right) \\
&+2 \cos \left(\frac{\gamma}{2}\right) \cos \left(\theta-\frac{\gamma}{2}\right) \\
&=2 \cos \left(\frac{\gamma}{2}\right) \cos \left(\frac{\beta-\alpha}{2}\right) \\
&+2 \cos \left(\frac{\gamma}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right) \\
&=2 \cos \left(\frac{\gamma}{2}\right)\left[\cos \left(\frac{\beta-\alpha}{2}\right)+\cos \left(\frac{\alpha+\beta}{2}\right)\right] \\
&=2 \cos \left(\frac{\gamma}{2}\right) 2 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \\
&= 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.