Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \frac{x+1}{\sqrt{2 x-1}} \mathrm{~d} x=f(x) \sqrt{2 x-1}+\mathrm{C},$ where $\mathrm{C}$ is a constant

of integration, then $f(x)$ is equal to:
MathematicsIndefinite IntegrationJEE MainJEE Main 2019 (11 Jan Shift 2)
Options:
  • A $\frac{1}{3}(x+1)$
  • B $\frac{2}{3}(x+2)$
  • C $\frac{2}{3}(x-4)$
  • D $\frac{1}{3}(x+4)$
Solution:
2398 Upvotes Verified Answer
The correct answer is: $\frac{1}{3}(x+4)$
Let $I=\int \frac{x+1}{\sqrt{2 x-1}} d x$

Put $\sqrt{2 x-1}=t$

$\begin{array}{l}

\therefore \quad 2 x-1=t^{2} \Rightarrow d x=t d t \\

I=\int \frac{\left(t^{2}+3\right)}{2} d t=\frac{t^{3}}{6}+\frac{3 t}{2}+C \\

=\frac{(2 x-1)^{\frac{3}{2}}}{6}+\frac{3}{2}(2 x-1)^{\frac{1}{2}}+C \\

=\sqrt{2 x-1}\left(\frac{x+4}{3}\right)+C \\

=f(x) \cdot \sqrt{2 x-1}+C

\end{array}$

Hence, $f(x)=\frac{x+4}{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.