Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $2^{x}+2^{y}=2^{x+y}$, then $\frac{d y}{d x}$ is
MathematicsDifferentiationKCETKCET 2020
Options:
  • A $2^{y-x}$
  • B $-2^{y-x}$
  • C $2^{x-y}$
  • D $\frac{2^{y}-1}{2^{x}-1}$
Solution:
2720 Upvotes Verified Answer
The correct answer is: $-2^{y-x}$
We have,
$2^{x}+2^{y}=2^{x+y}...(i)$
On differentiating Eq. (i) w.r.t. $x$, we get
$2^{x} \log 2+2^{y} \log 2 \frac{d y}{d x}$
$=2^{x+y} \log 2\left(1+\frac{d y}{d x}\right)$
$\Rightarrow \quad 2^{x}+2^{y} \frac{d y}{d x}=2^{x+y}\left(1+\frac{d y}{d x}\right)$
$\Rightarrow \quad 2^{x}-2^{x+y}=\frac{d y}{d x}\left(2^{x+y}-2^{y}\right)$
$\Rightarrow \quad-2^{y}=\frac{d y}{d x}\left(2^{x}\right)$
$\Rightarrow \quad \frac{d y}{d x}=-2^{y} / 2^{x}=-2^{y-x}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.