Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\text { If } 2^{x}+2^{y}=2^{x+y} \text {, then } \frac{d y}{d x}=$
MathematicsDifferentiationBITSATBITSAT 2021
Options:
  • A $2^{x-y} \frac{2^{y}-1}{2^{x}-1}$
  • B $2^{x-y} \frac{2^{y}-1}{1-2^{x}}$
  • C $\frac{2^{x}+2^{y}}{2^{x}-2^{y}}$
  • D None of these
Solution:
2742 Upvotes Verified Answer
The correct answer is: None of these
On differentiating

$\begin{array}{l}

2^{x} \log 2+2^{y} \log 2 \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\

=2^{x} \cdot 2^{y} \frac{\mathrm{dy}}{\mathrm{dx}} \cdot \log 2+2^{y} \cdot 2^{x} \log 2 \\

\Rightarrow 2^{x}+2^{y} \frac{\mathrm{dy}}{\mathrm{dx}}=2^{x+y} \frac{\mathrm{dy}}{\mathrm{dx}}+2^{x+y} \\

\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2^{x+y}-2^{x}}{2^{y}-2^{x+y}} \\

\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2^{x}+2^{y}-2^{x}}{2^{y}-2^{x}-2^{y}}=-2^{y-x}

\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.