Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\frac{x^{2}+2 x+7}{2 x+3} < 6, \mathrm{x} \in \mathrm{R}$, then
MathematicsBasic of MathematicsVITEEEVITEEE 2011
Options:
  • A $x>11$ or $x < -\frac{3}{2}$
  • B $\quad x>11$ or $x < -1$
  • C $-\frac{3}{2} < x < -1$
  • D $-1 < x < 11$ or $x < -\frac{3}{2}$
Solution:
2371 Upvotes Verified Answer
The correct answer is: $-1 < x < 11$ or $x < -\frac{3}{2}$
$$
\begin{aligned}
& \frac{x^{2}+2 x+7}{2 x+3} < 6 \\
\Rightarrow & \frac{x^{2}+2 x+7}{2 x+3}-6 < 0 \\
\Rightarrow & \frac{x^{2}-10 x-11}{2 x+3} < 0 \\
\Rightarrow & \frac{(x-11)(x+1)}{2 x+3} < 0 \\
\Rightarrow & \frac{(x-11)(x+1)(2 x+3)}{(2 x+3)^{2}} < 0 \\
\Rightarrow &(x-11)(x+1)(2 x+3) < 0 \\
\Rightarrow & x \in\left(-\infty,-\frac{3}{2}\right) \cup(-1,11)
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.