Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $3 \cos x \neq 2 \sin x$, then the general solution of $\sin ^2 x-\cos 2 x=2-\sin 2 x$ is
MathematicsTrigonometric EquationsTS EAMCETTS EAMCET 2009
Options:
  • A $n \pi+(-1)^n \frac{\pi}{2}, n \in Z$
  • B $\frac{n \pi}{2}, n \in Z$
  • C $(4 n \pm 1) \frac{\pi}{2}, n \in Z$
  • D $(2 n-1) \pi, n \in Z$
Solution:
2047 Upvotes Verified Answer
The correct answer is: $(4 n \pm 1) \frac{\pi}{2}, n \in Z$
$\begin{gathered}\sin ^2 x-\cos 2 x=2-\sin 2 x \\ \Rightarrow 1-\cos ^2 x-\left(2 \cos ^2 x-1\right) \\ =2-2 \sin x \cos x \\ \Rightarrow \quad-3 \cos ^2 x+2 \sin x \cos x=0 \\ \Rightarrow \quad \cos x(2 \sin x-3 \cos x)=0 \\ \Rightarrow \quad \cos x=0, \quad(\because 2 \sin x-3 \cos x \neq 0) \\ \Rightarrow \quad x=2 n \pi \pm \frac{\pi}{2} \\ \Rightarrow \quad x=(4 n \pm 1) \frac{\pi}{2}\end{gathered}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.