Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $3 \mathrm{f}(x)-\mathrm{f}\left(\frac{1}{x}\right)=8 \log _2 x^3, x>0$, then $\mathrm{f}(2), \mathrm{f}(4)$ $\mathrm{f}(8)$ are in
MathematicsFunctionsMHT CETMHT CET 2023 (13 May Shift 1)
Options:
  • A A.P.
  • B G.P.
  • C H.P.
  • D Arithmetico Geometric Progression.
Solution:
1171 Upvotes Verified Answer
The correct answer is: A.P.
$$
\begin{aligned}
& 3 f(x)-f\left(\frac{1}{x}\right)=8 \log _2 x^3 \\
& \Rightarrow 3 \mathrm{f}\left(\frac{1}{x}\right)-\mathrm{f}(x)=8 \log _2\left(\frac{1}{x}\right)^3 .
\end{aligned}
$$
From (i) and (ii), we get
$$
\begin{aligned}
& 8 \mathrm{f}(x)=24 \log _2 x^3+8 \log _2\left(\frac{1}{x}\right)^3 \\
& \Rightarrow 8 \mathrm{f}(x)=72 \log _2 x-24 \log _2 x \\
& \Rightarrow 8 \mathrm{f}(x)=48 \log _2 x \\
& \Rightarrow \mathrm{f}(x)=6 \log _2 x
\end{aligned}
$$
$\begin{array}{ll}\therefore \quad & f^{\prime}(2)=6 \log _2 2=6 \\ & f^{\prime}(4)=6 \log _2 4=12 \\ & f^{(}(8)=6 \log _2 8=18 \\ \therefore \quad & f(2), f(4), f(8) \text { are in A.P. }\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.