Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( 3 \sin ^{-1} \frac{2 x}{1+x^{2}}-4 \cos ^{-1} \frac{1-x^{2}}{1+x^{2}}+2 \tan ^{-1} \frac{2 x}{1-x^{2}}=\frac{\pi}{3} \), then the value of \( x \) lying in \( \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \) is
MathematicsInverse Trigonometric FunctionsJEE Main
Options:
  • A \( \frac{1}{2} \)
  • B \( \frac{1}{\sqrt{3}} \)
  • C \( \frac{\sqrt{3}}{2} \)
  • D \( -\frac{\sqrt{3}}{2} \)
Solution:
1382 Upvotes Verified Answer
The correct answer is: \( \frac{1}{\sqrt{3}} \)
3sin-12x1+x2-cos-1 1-x21+x2+2tan-1 2x1-x2=π3
On putting x=tan θ, we get
3sin-12tanθ1+tanθ-4cos-11-tanθ1+tanθ+2tan-12tanθ1-tanθ=π3
3sin-1(sin2θ)-4cos-1cos2θ+2tan-1(tan2θ)=π3
32θ-42θ+22θ=π3
6θ-8θ+4θ=π3
θ=π6tan-1x=π6
x=tanπ6x=13

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.