Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\quad$ If $4 a^{2}+b^{2}+2 c^{2}+4 a b-6 a c-3 b c=0,$ the family of lines $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is concurrent at one or the other of the two points-
MathematicsStraight LinesJEE Main
Options:
  • A $\left(-1,-\frac{1}{2}\right),(-2,-1)$
  • B $(-1,-1),\left(-2,-\frac{1}{2}\right)$
  • C $(-1,2),\left(\frac{1}{2},-1\right)$
  • D $(1,2),\left(\frac{1}{2},-1\right)$
Solution:
1996 Upvotes Verified Answer
The correct answer is: $\left(-1,-\frac{1}{2}\right),(-2,-1)$
$$

\text { } \begin{array}{l}

4 a^{2}+b^{2}+2 c^{2}+4 a b-6 a c-3 b c \\

\quad \equiv(2 a+b)^{2}-3(2 a+b) c+2 c^{2}=0 \\

\quad \Rightarrow(2 a+b-2 c)(2 a+b-c)=0 \Rightarrow c=2 a+b \\

\quad \text { or } c=a+\frac{1}{2} b

\end{array}

$$

The equation of the family of lines is

$$

a(x+2)+b(y+1)=0 \text { or } a(x+1)+b\left(y+\frac{1}{2}\right)=0

$$

giving the point of concurrence (-2,-1) or

$$

\left(-1,-\frac{1}{2}\right)

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.