Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(4 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) are respectively the position vectors of the vertices \(A, B, C\) of \(\triangle A B C\), then the position vector of the point where the bisector of angle \(A\) meet \(\mathbf{B C}\) is
MathematicsStraight LinesAP EAMCETAP EAMCET 2019 (20 Apr Shift 1)
Options:
  • A \(2 \hat{\mathbf{i}}+\frac{13}{3} \hat{\mathbf{j}}+2 \hat{\mathbf{k}}\)
  • B \(2 \hat{\mathbf{i}}-\frac{13}{3} \hat{\mathbf{j}}+6 \hat{\mathbf{k}}\)
  • C \(2 \hat{\mathbf{i}}+13 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}\)
  • D \(2 \hat{\mathbf{i}}+\frac{13}{3} \hat{\mathbf{j}}+6 \hat{\mathbf{k}}\)
Solution:
1090 Upvotes Verified Answer
The correct answer is: \(2 \hat{\mathbf{i}}+\frac{13}{3} \hat{\mathbf{j}}+6 \hat{\mathbf{k}}\)
As we know bisector of angle \(A\) divides the \(B C\) in ratio \(c: b\).
where \(c\) is length of side \(A B=\sqrt{4+16+16}=6\)
and \(b\) is length of side \(A C=\sqrt{4+4+1}=3\)
\(\therefore\) Position vector of the point where the bisector of angle \(A\) meet \(\mathbf{B C}\) is
\(\begin{aligned}
& \frac{6(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})+3(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})}{6+3} \\
& =\frac{18 \hat{\mathbf{i}}+39 \hat{\mathbf{j}}+54 \hat{\mathbf{k}}}{9}=2 \hat{\mathbf{i}}+\frac{13}{3} \hat{\mathbf{j}}+6 \hat{\mathbf{k}}
\end{aligned}\)
Hence, option (4) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.