Search any question & find its solution
Question:
Answered & Verified by Expert
If $4^{\log _{9} 3}+9^{\log _{2} 4}=10^{\log _{x} 83}$, then $x$ is equal to
Options:
Solution:
1752 Upvotes
Verified Answer
The correct answer is:
10
We have,
$4^{\log _{9}} 3+9^{\log _{2}} 4=10^{\log _{x} 83}$
$\Rightarrow 4^{\frac{1}{2} \log _{3}} 3+9^{2 \log _{2}} 2=10^{\log _{x}} 83$
$\Rightarrow \quad 2+81=10^{\log _{x}} 83$
$\Rightarrow \quad 83=10^{\log _{x}} 83$
$\Rightarrow \quad \log _{10} 83=\log _{x} 83$
$\Rightarrow \quad x=10$
$4^{\log _{9}} 3+9^{\log _{2}} 4=10^{\log _{x} 83}$
$\Rightarrow 4^{\frac{1}{2} \log _{3}} 3+9^{2 \log _{2}} 2=10^{\log _{x}} 83$
$\Rightarrow \quad 2+81=10^{\log _{x}} 83$
$\Rightarrow \quad 83=10^{\log _{x}} 83$
$\Rightarrow \quad \log _{10} 83=\log _{x} 83$
$\Rightarrow \quad x=10$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.