Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+\mathrm{i})^2}{\mathrm{a}-\mathrm{i}}, \mathrm{i}=\sqrt{-1}$, has magnitude $\frac{2}{\sqrt{5}}$, then $\bar{z}$ is
MathematicsComplex NumberMHT CETMHT CET 2023 (14 May Shift 1)
Options:
  • A $-\frac{2}{5}-\frac{4}{5} \mathrm{i}$
  • B $-\frac{2}{5}+\frac{4}{5} i$
  • C $\frac{2}{5}-\frac{4}{5} \mathrm{i}$
  • D $\frac{2}{5}+\frac{4}{5} \mathrm{i}$
Solution:
1757 Upvotes Verified Answer
The correct answer is: $-\frac{2}{5}-\frac{4}{5} \mathrm{i}$
$\begin{aligned} z & =\frac{(1+i)^2}{a-i} \\ & =\frac{2 i}{a-i}=\frac{2 i(a+i)}{a^2+1} \\ \therefore \quad|z| & =\sqrt{\frac{-2+2 a i}{a^2+1}} \\ \Rightarrow & \frac{2}{\sqrt{5}}=\frac{2 a^2}{\sqrt{a^2+1}}\end{aligned}$
$\Rightarrow \mathrm{a}=2 \quad \ldots[\because \mathrm{a}>0]$
$\begin{aligned} \therefore \quad z & =\frac{-2+4 i}{5}=\frac{-2}{5}+\frac{4}{5} i \\ & \Rightarrow \bar{z}=-\frac{2}{5}-\frac{4}{5} \mathrm{i}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.