Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a>0$, then $\int_{-\pi}^\pi \frac{\sin ^2 x}{1+a^x} d x$ is equal to
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2012
Options:
  • A $\frac{\pi}{2}$
  • B $\pi$
  • C $\frac{2 \pi}{2}$
  • D $a \pi$
Solution:
1516 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2}$
Let $l=\int_{-\pi}^\pi \frac{\sin ^2 x}{1+a^x} d x$
Put $x=-x$, we get
$\begin{aligned} & I=-\int_\pi^{-\pi} \frac{\sin ^2(-x)}{1+a^{-x}} d x \\ \Rightarrow & I=\int_{-\pi}^\pi a^x \frac{\sin ^2 x}{1+a^x} d x\end{aligned}$
On adding Fqs. (i) and (ii), we get
$\begin{aligned} 2 I & =\int_{-\pi}^\pi \frac{\left(1+a^x\right) \sin ^2 x}{\left(1+a^x\right)} d x \\ & =\int_{-\pi}^\pi \sin ^2 x d x \\ & =2 \int_0^\pi \sin ^2 x d x=\int_0^\pi(1-\cos 2 x) d x \\ & =\left[x+\frac{\sin 2 x}{2}\right]_0^\pi \\ & =\left(\pi+\frac{\sin 2 \pi}{2}-0-0\right) \\ \Rightarrow \quad 2 I & =\pi \\ \Rightarrow \quad I & =\frac{\pi}{2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.