Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ then $\mathbf{A}^{100}$ :
Options:
Solution:
1972 Upvotes
Verified Answer
The correct answer is:
$2^{99} \mathrm{~A}$
Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$$
\begin{array}{l}
\mathrm{A}^{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=2\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=2 \mathrm{~A} \\
\mathrm{~A}^{3}=2^{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \mathrm{A}^{4}=2^{3}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
\mathrm{A}^{3}=2^{2} \mathrm{~A}, \quad \mathrm{~A}^{4}=2^{3} \mathrm{~A} \\
\therefore \mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
\Rightarrow \mathrm{A}^{100}=2^{100-1} \mathrm{~A} \therefore \mathrm{A}^{100}=2^{99} \mathrm{~A}
\end{array}
$$
$$
\begin{array}{l}
\mathrm{A}^{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=2\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=2 \mathrm{~A} \\
\mathrm{~A}^{3}=2^{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \mathrm{A}^{4}=2^{3}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
\mathrm{A}^{3}=2^{2} \mathrm{~A}, \quad \mathrm{~A}^{4}=2^{3} \mathrm{~A} \\
\therefore \mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
\Rightarrow \mathrm{A}^{100}=2^{100-1} \mathrm{~A} \therefore \mathrm{A}^{100}=2^{99} \mathrm{~A}
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.