Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ then $\mathbf{A}^{100}$ :
MathematicsMatricesBITSATBITSAT 2014
Options:
  • A $2^{100} \mathrm{~A}$
  • B $2^{99} \mathrm{~A}$
  • C $2^{101} \mathrm{~A}$
  • D None of the above
Solution:
1972 Upvotes Verified Answer
The correct answer is: $2^{99} \mathrm{~A}$
Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

$$

\begin{array}{l}

\mathrm{A}^{2}=\left[\begin{array}{ll}

1 & 1 \\

1 & 1

\end{array}\right]\left[\begin{array}{ll}

1 & 1 \\

1 & 1

\end{array}\right]=2\left[\begin{array}{ll}

1 & 1 \\

1 & 1

\end{array}\right]=2 \mathrm{~A} \\

\mathrm{~A}^{3}=2^{2}\left[\begin{array}{ll}

1 & 1 \\

1 & 1

\end{array}\right], \mathrm{A}^{4}=2^{3}\left[\begin{array}{ll}

1 & 1 \\

1 & 1

\end{array}\right] \\

\mathrm{A}^{3}=2^{2} \mathrm{~A}, \quad \mathrm{~A}^{4}=2^{3} \mathrm{~A} \\

\therefore \mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1}\left[\begin{array}{ll}

1 & 1 \\

1 & 1

\end{array}\right] \\

\Rightarrow \mathrm{A}^{100}=2^{100-1} \mathrm{~A} \therefore \mathrm{A}^{100}=2^{99} \mathrm{~A}

\end{array}

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.