Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{lll}1 & 2 & i \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$, then $[\operatorname{adj}(\operatorname{adj} A)]^{-1}=$
MathematicsMatricesMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $A^{2}$
  • B $2 \mathrm{~A}$
  • C $\mathrm{A}^{-1}$
  • D I
Solution:
2453 Upvotes Verified Answer
The correct answer is: $\mathrm{A}^{-1}$
We have $|A|=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
$\quad=1(0-1)-2(0-1)+i(0)$
$\quad=-1+2=1$
$\begin{aligned} \text { Adj(Adj A) } &=|A|^{n-2} A \\ \text { Now [adj (adj A)] }^{-1} &=\left[|A|^{p-2} A\right]^{-1} \\ &=\left[(1)^{3-2} A\right]^{-1}=A^{-1} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.