Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 4 \\ 3 & 4 & 3\end{array}\right]$, then $A^{-1}=$
MathematicsMatricesMHT CETMHT CET 2022 (05 Aug Shift 2)
Options:
  • A $-\frac{1}{4}\left[\begin{array}{ccc}-7 & -6 & -1 \\ 9 & 6 & -1 \\ -5 & -2 & 1\end{array}\right]$
  • B $\frac{1}{4}\left[\begin{array}{ccc}-7 & 6 & -1 \\ 9 & -6 & -1 \\ -5 & 2 & 1\end{array}\right]$
  • C $-\frac{1}{4}\left[\begin{array}{ccc}-7 & 6 & 1 \\ 9 & -1 & 1 \\ -5 & 2 & 1\end{array}\right]$
  • D $-\frac{1}{4}\left[\begin{array}{ccc}-7 & 6 & -1 \\ 9 & -6 & -1 \\ -5 & 2 & 1\end{array}\right]$
Solution:
2758 Upvotes Verified Answer
The correct answer is: $-\frac{1}{4}\left[\begin{array}{ccc}-7 & 6 & -1 \\ 9 & -6 & -1 \\ -5 & 2 & 1\end{array}\right]$
$\because A^{-1}=\frac{\operatorname{adj}(A)}{|A|}=-\frac{1}{4}\left[\begin{array}{ccc}-7 & 6 & -1 \\ 9 & -6 & -1 \\ -5 & 2 & 1\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.