Search any question & find its solution
Question:
Answered & Verified by Expert
If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3\end{array}\right]$, then $A_{31}+A_{32}+A_{33}=$ where $A_{i j}$, where $A=\left[a_{i j}\right]_{3 \times 3}$
Options:
Solution:
1415 Upvotes
Verified Answer
The correct answer is:
0
We know that sum of the product of elements of one row of a determinant and cofactor of corresponding element of any other row is zero.
$\begin{aligned} & \Rightarrow a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}=0 \\ & \Rightarrow 1 \cdot A_{31}+1 \cdot A_{32}+1 \cdot A_{33}=0 \Rightarrow A_{31}+A_{32}+A_{33}=0\end{aligned}$
$\begin{aligned} & \Rightarrow a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}=0 \\ & \Rightarrow 1 \cdot A_{31}+1 \cdot A_{32}+1 \cdot A_{33}=0 \Rightarrow A_{31}+A_{32}+A_{33}=0\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.