Search any question & find its solution
Question:
Answered & Verified by Expert
If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $A^{-1}=$
Options:
Solution:
2891 Upvotes
Verified Answer
The correct answer is:
$\frac{-1}{2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then
$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$
So, if $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then
$$
\begin{array}{r}
A^{-1}=\frac{1}{4-6}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \\
=-\frac{1}{2}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]
\end{array}
$$
$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$
So, if $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then
$$
\begin{array}{r}
A^{-1}=\frac{1}{4-6}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \\
=-\frac{1}{2}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.