Search any question & find its solution
Question:
Answered & Verified by Expert
If $|\mathbf{a}|=1,|\mathbf{b}|=2$ and the angle between $\mathbf{a}$ and $\mathbf{b}$ is $120^{\circ}$, then $\{(\mathbf{a}+3 \mathbf{b}) \times(3 \mathbf{a}-\mathbf{b})\}^2$ is equal to
Options:
Solution:
2965 Upvotes
Verified Answer
The correct answer is:
300
$\begin{aligned} & \therefore\{(\mathbf{a}+3 \mathbf{b}) \times(3 \mathbf{a}-\mathbf{b})\}^2 \\ & =\{3 \mathbf{a} \times \mathbf{a}-\mathbf{a} \times \mathbf{b}+9 \mathbf{b} \times \mathbf{a}-3 \mathbf{b} \times \mathbf{b}\}^2 \\ & =\{-10 \mathbf{a} \times \mathbf{b}\}^2 \\ & =100\left[|\mathbf{a}||\mathbf{b}| \hat{\mathbf{n}} \sin 120^{\circ}\right]^2 \\ & =100\left[1 \times 2 \times \hat{\mathbf{n}} \times \frac{\sqrt{3}}{2}\right]^2=100 \times 3=300\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.