Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array}\right]$, then $A^{4} A^{-1}=$
MathematicsMatricesMHT CETMHT CET 2020 (13 Oct Shift 2)
Options:
  • A $\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right]$
  • B $\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1\end{array}\right]$
  • C $\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right]$
  • D $\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1\end{array}\right]$
Solution:
2419 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right]$
Understand that $\mathrm{A}$ is a diagonal matrix
$\therefore A^{n}=\left[\begin{array}{ccc}
a_{11}^{n} & 0 & 0 \\
0 & a_{22}^{n} & 0 \\
0 & 0 & a_{33}^{n}
\end{array}\right] \Rightarrow A^{4}=\left[\begin{array}{ccc}
16 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 1
\end{array}\right]$
$\begin{aligned} \text { Here }|A| &=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array} \mid=2(2)=4\right.\\ \operatorname{adj} A &=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -4\end{array}\right] \Rightarrow A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -4\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right] \\ A^{4} A^{-1} &=\left[\begin{array}{ccc}16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right] \\ &=\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right] \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.