Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$, then $|\operatorname{adj} A|$ is equal to
MathematicsMatricesKCETKCET 2009
Options:
  • A 0
  • B 9
  • C $\frac{1}{9}$
  • D 81
Solution:
2155 Upvotes Verified Answer
The correct answer is: 81
Given, $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$
$\mathrm{C}_{11}=4, \quad \mathrm{C}_{12}=1, \quad \mathrm{C}_{13}=-2$
$C_{21}=-2, \quad C_{22}=4, \quad C_{23}=1$
$\mathrm{C}_{31}=1, \quad \mathrm{C}_{32}=-2, \quad \mathrm{C}_{33}=4$
$\therefore \quad \operatorname{adj}(A)=\left[\begin{array}{rrr}4 & 1 & -2 \\ -2 & 4 & 1 \\ 1 & -2 & 4\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{rrr}4 & -2 & 1 \\ 1 & 4 & -2 \\ -2 & 1 & 4\end{array}\right]$
$\therefore \quad|\operatorname{adj} \mathrm{A}|=4(16+2)+2(4-4)+(1+8)$
$=72+0+9=81$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.