Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$, such that $A^{2}-4 A+3 I=0$, then $A^{-1}=$
MathematicsMatricesMHT CETMHT CET 2020 (12 Oct Shift 1)
Options:
  • A $\frac{-1}{3}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
  • B $\frac{-1}{3}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
  • C $\frac{1}{3}\left[\begin{array}{cc}-2 & -1 \\ 1 & -2\end{array}\right]$
  • D $\frac{1}{3}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
Solution:
1368 Upvotes Verified Answer
The correct answer is: $\frac{1}{3}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
$A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right] \quad \Rightarrow|A|=4-1=3 \quad$ and $(\operatorname{adj} A)=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
$\therefore A^{-1} \quad=\frac{1}{3}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.