Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{A}(-2,1), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-4)$ are three points. Then, the angle between $\mathrm{BA}$ and $\mathrm{BC}$ is
Options:
Solution:
2960 Upvotes
Verified Answer
The correct answer is:
$\tan ^{-1}\left(\frac{2}{3}\right)$
$A(-2,1), B(2,3)$ and $C(-2,-4)$ are three given points.
Slope of the line $B A$
$$
\begin{array}{l}
m_{1}=\frac{1-3}{-2-2}=\frac{1}{2} \\
\left(\text { Using slope formula, } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
\end{array}
$$
Slope of the line $B C$
$$
m_{2}=\frac{-4-3}{-2-2}=\frac{7}{4}
$$
Now, angle between $A B$ and $B C$ is given by
$$
\begin{array}{l}
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{\frac{1}{2}-\frac{7}{4}}{1+\frac{1}{2} \cdot \frac{7}{4}}\right| \\
\Rightarrow \tan \theta=\left|-\frac{10}{15}\right| \Rightarrow \tan \theta=\left|-\frac{2}{3}\right| \\
\Rightarrow \theta=\tan ^{-1}\left|-\frac{2}{3}\right| \Rightarrow \theta=\tan ^{-1}\left(\frac{2}{3}\right) \\
\quad[\because|-x|=x]
\end{array}
$$
Slope of the line $B A$
$$
\begin{array}{l}
m_{1}=\frac{1-3}{-2-2}=\frac{1}{2} \\
\left(\text { Using slope formula, } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
\end{array}
$$
Slope of the line $B C$
$$
m_{2}=\frac{-4-3}{-2-2}=\frac{7}{4}
$$
Now, angle between $A B$ and $B C$ is given by
$$
\begin{array}{l}
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{\frac{1}{2}-\frac{7}{4}}{1+\frac{1}{2} \cdot \frac{7}{4}}\right| \\
\Rightarrow \tan \theta=\left|-\frac{10}{15}\right| \Rightarrow \tan \theta=\left|-\frac{2}{3}\right| \\
\Rightarrow \theta=\tan ^{-1}\left|-\frac{2}{3}\right| \Rightarrow \theta=\tan ^{-1}\left(\frac{2}{3}\right) \\
\quad[\because|-x|=x]
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.