Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|\overrightarrow{\mathrm{a}}|=\sqrt{2},|\overrightarrow{\mathrm{b}}|=\sqrt{3}$ and $|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=\sqrt{6}$, then what is $|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|$
equal to?
MathematicsVector AlgebraNDANDA 2013 (Phase 1)
Options:
  • A 1
  • B 2
  • C 3
  • D 4
Solution:
1005 Upvotes Verified Answer
The correct answer is: 2
Consider $|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|^{2}+|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|^{2}=2\left(|\overrightarrow{\mathrm{a}}|^{2}+|\overrightarrow{\mathrm{b}}|^{2}\right)$
By putting the values of $|\overrightarrow{\mathrm{a}}|,|\overrightarrow{\mathrm{b}}|$ and $|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|$, we get
$6+|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|^{2}=2(2+3)$
$\Rightarrow \quad|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.