Search any question & find its solution
Question:
Answered & Verified by Expert
If $|\mathbf{a}|=2,|\mathbf{b}|=7$ and $\mathbf{a} \times \mathbf{b}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$, then the angle between and $b$ is
Options:
Solution:
2018 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{6}$
We have, $|a|=2,|b|=7$
and $x=3 \hat{\mathfrak{i}}+2 \hat{\hat{j}}+6 \hat{\mathrm{M}}$
So, $|a \times b|=\sqrt{9+4+36}=\sqrt{49}=7$
Since, $\mid$ a $\times \boldsymbol{b}|=|$ a || $\mathrm{D}|\sin \theta| \hat{\mathbf{n}} \mid$
$\Rightarrow \quad 7=(2)(7) \sin \theta \cdot 1[\because|\hat{\mathbf{n}}|=1]$
$\Rightarrow \quad \sin \theta=\frac{1}{2} \Rightarrow \sin \theta=\sin \frac{\pi}{6} \Rightarrow \quad \theta=\frac{\pi}{6}$
and $x=3 \hat{\mathfrak{i}}+2 \hat{\hat{j}}+6 \hat{\mathrm{M}}$
So, $|a \times b|=\sqrt{9+4+36}=\sqrt{49}=7$
Since, $\mid$ a $\times \boldsymbol{b}|=|$ a || $\mathrm{D}|\sin \theta| \hat{\mathbf{n}} \mid$
$\Rightarrow \quad 7=(2)(7) \sin \theta \cdot 1[\because|\hat{\mathbf{n}}|=1]$
$\Rightarrow \quad \sin \theta=\frac{1}{2} \Rightarrow \sin \theta=\sin \frac{\pi}{6} \Rightarrow \quad \theta=\frac{\pi}{6}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.