Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathbf{a}=2 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{b}=2 \mathbf{i}-\mathbf{j}$, then the unit vector along $\mathbf{a}+\mathbf{b}$ will be
Options:
Solution:
1134 Upvotes
Verified Answer
The correct answer is:
$\frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}$
$\quad \mathbf{a}+\mathbf{b}=4 \mathbf{i}+4 \mathbf{j}$ therefore unit vector
$\frac{4(\mathbf{i}+\mathbf{j})}{\sqrt{32}}=\frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}$
$\frac{4(\mathbf{i}+\mathbf{j})}{\sqrt{32}}=\frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.