Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \vec{b}=-3 \hat{i}+5 \hat{j}-4 \hat{k}$ and $\vec{c}=6 \hat{i}-4 \hat{j}+5 \hat{k}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})=$
MathematicsVector AlgebraAP EAMCETAP EAMCET 2023 (18 May Shift 1)
Options:
  • A $-216$
  • B $243$
  • C $81$
  • D $-27$
Solution:
1168 Upvotes Verified Answer
The correct answer is: $-216$
$\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \vec{b}=-3 \hat{i}+5 \hat{j}-4 \hat{k}, \vec{c}=6 \vec{i}-4 \hat{j}+5 \hat{k}$
$\overrightarrow{\mathrm{a}} \times \hat{\mathrm{b}}\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -1 & 3 \\ -3 & 5 & -9\end{array}\right|=\hat{\mathrm{i}}(4-15)-\hat{\mathrm{j}}(-8+9)+\hat{\mathrm{k}}(10-3)$
$=-11 \hat{\mathrm{i}}-\hat{\mathrm{j}}+7 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ -3 & 5 & -4 \\ 6 & -4 & 5\end{array}\right|=\hat{\mathrm{i}}(25-16)-\hat{\mathrm{j}}(-15+24)+\hat{\mathrm{k}}(12-30)$
$=9 \hat{i}-9 \hat{j}-18 \hat{k}$
$\begin{aligned} & (\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})=(-11 \hat{i}-\hat{j}+7 \hat{k}) \cdot(9 \hat{i}-9 \hat{j}-18 \hat{k}) \\ & =-99+9-126=-216\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.