Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$, then what is $A(\operatorname{adj} A)$ equal to?
MathematicsMatricesNDANDA 2009 (Phase 1)
Options:
  • A $\left[\begin{array}{cc}0 & 10 \\ 10 & 0\end{array}\right]$
  • B $\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$
  • C $\left[\begin{array}{cc}1 & 10 \\ 10 & 1\end{array}\right]$
  • D $\left[\begin{array}{cc}10 & 1 \\ 1 & 10\end{array}\right]$
Solution:
2646 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$
Let $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$
We have If $A$ is a square matrix of order $n$ then $A(\operatorname{adj} A)=|A| . \mathrm{I}_{\mathrm{n}}$
Here, $n=2$ $\therefore A(\operatorname{adj} A)=\mathrm{I}_{2}|A|$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left|\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right|=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right](12-2)=10\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{ll}10 & 0 \\ 0 & 10\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.