Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{A}(3,2,-1), \mathrm{B}(-2,2,-3)$ and $\mathrm{D}(-2,5,-4)$ are the vertices of a parallelogram, then the area of the parallelogram is
MathematicsVector AlgebraMHT CETMHT CET 2021 (23 Sep Shift 2)
Options:
  • A 296 sq. units
  • B $\sqrt{286}$ sq. units
  • C 300 sq. units
  • D $\sqrt{300}$ sq. units
Solution:
2186 Upvotes Verified Answer
The correct answer is: $\sqrt{286}$ sq. units
We have $\mathrm{A} \equiv(3,2,-1), \mathrm{B} \equiv(-2,2,-3)$ and $\mathrm{D} \equiv(-2,5,-4)$
$$
\therefore \overline{\mathrm{AB}}=-5 \hat{\mathrm{i}}-2 \hat{\mathrm{k}} \text { and } \overline{\mathrm{AD}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}
$$
Area of parallelogram $=|\overline{\mathrm{AB}} \times \overline{\mathrm{AD}}|$
Now
$$
\begin{aligned}
& \overline{\mathrm{AB}} \times \overline{\mathrm{AD}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
-5 & 0 & -2 \\
-5 & 3 & -3
\end{array}\right|=\hat{\mathrm{i}}(6)-\hat{\mathrm{j}}(5)+\hat{\mathrm{k}}(-15)=6 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-15 \hat{\mathrm{k}} \\
& \therefore \text { Area }=\sqrt{(6)^2+(-5)^2+(-15)^2}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.