Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|\vec{a}|=3,|\vec{b}|=2,|\vec{c}|=1$ then the value of $|\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}|$ is (given that $\vec{a}+\vec{b}+\vec{c}=0$ )
MathematicsVector AlgebraVITEEEVITEEE 2016
Options:
  • A $-7$
  • B 7
  • C 14
  • D $-14$
Solution:
2599 Upvotes Verified Answer
The correct answer is: 7
$\begin{aligned} & \vec{a}+\vec{b}+\vec{c}=0 \\ & \Rightarrow(\vec{a}+\vec{b}+\vec{c})^{2}=0 \\ & \Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\ & \Rightarrow 9+4+1+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\ & \Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=7 \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.