Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}-\vec{b}|=7$, then what is the value of
$|\vec{a}+\vec{b}| ?$
MathematicsVector AlgebraNDANDA 2009 (Phase 2)
Options:
  • A 3
  • B 2
  • C 1
  • D 0
Solution:
2159 Upvotes Verified Answer
The correct answer is: 1
Given, $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}-\vec{b}|=7$
Since, $|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}=2\left[|\vec{a}|^{2}+|\vec{b}|^{2}\right]$
$\therefore$ By putting the values of $|\vec{a}|,|\vec{b}|$ and $|\vec{a}-\vec{b}|$ we get
$|\vec{a}+\vec{b}|^{2}+7^{2}=2\left[3^{2}+4^{2}\right]$
$|\vec{a}+\vec{b}|^{2}=50-49 \Rightarrow|\vec{a}+\vec{b}|^{2}=1 \Rightarrow|\vec{a}+\vec{b}|=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.