Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \sqrt{\frac{x}{a^3-x^3}} d x=g(x)+c$, then $g(x)$ is equal to :
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2006
Options:
  • A $\frac{2}{3} \cos ^{-1} x$
  • B $\frac{2}{3} \sin ^{-1}\left(\frac{x^3}{a^3}\right)$
  • C $\frac{2}{3} \sin ^{-1}\left(\sqrt{\frac{x^3}{a^3}}\right)$
  • D $\frac{2}{3} \cos ^{-1}\left(\frac{x}{a}\right)$
Solution:
1798 Upvotes Verified Answer
The correct answer is: $\frac{2}{3} \sin ^{-1}\left(\sqrt{\frac{x^3}{a^3}}\right)$
Let $I=\int \sqrt{\frac{x}{a^3-x^3}} d x$
$=\int \sqrt{\frac{a^3}{a^3-x^3}} \cdot \sqrt{\frac{a^3}{x^3}} \cdot \frac{x^3}{a^3} d x$
$=\frac{2}{3} \sin ^{-1}\left(\sqrt{\frac{x^3}{a^3}}\right)+c$
But $\quad I=g(x)+c$
$\therefore \quad g(x)=\frac{2}{3} \sin ^{-1}\left(\sqrt{\frac{x^3}{a^3}}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.