Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=[35]$ and $B=[73]$, then find a non-zero matrix $C$ such that $\mathrm{AC}=\mathrm{BC}$.
MathematicsMatrices
Solution:
1013 Upvotes Verified Answer
We have, $\mathrm{A}=\left[\begin{array}{ll}3 & 5\end{array}\right]_{1 \times 2}$ and $\mathrm{B}=\left[\begin{array}{ll}7 & 3\end{array}\right]_{1 \times 2}$
Let $C=\left[\begin{array}{l}x \\ y\end{array}\right]_{2 \times 1}$ is a non-zero matrix of order $2 \times 1$.
$$
\therefore A C=\left[\begin{array}{ll}
3 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=[3 x+5 y]
$$
and $\mathrm{BC}=\left[\begin{array}{ll}7 & 3\end{array}\right]\left[\begin{array}{l}x \\ \mathrm{y}\end{array}\right]=[7 x+3 \mathrm{y}]$
For $\mathrm{AC}=\mathrm{BC}$,
$$
[3 x+5 y]=[7 x+3 y]
$$
On using equality of matrix, we get
$$
3 x+5 y=7 x+3 y
$$
$$
\Rightarrow y=2 x \therefore C=\left[\begin{array}{c}
x \\
2 x
\end{array}\right]
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.